

STATISTICAL EDGE DETECTION

Scott Konishi, Alan Yuille, James Coughlan and Song Chun Zhu

Statistical Image Regularities

 1. There are considerable statistical regularities in real images. (Field, Atick, Bialek, Ruderman, Simoncelli, Zhu, Mumford, ... Green.)

 2 Histograms of differential filters are very similar between images.

Edge Detection

- There have been a thousand PhD theses on edge detection (computer vision myth).
- None work significantly better than Canny's master thesis (MIT 1983).

Not considering global methods such as Geman & Geman, Mumford, Osher, Zhu...

Statistical Edge Detection

- 1. Let f(I(x)) denote the filter response at point x on image I.
- 2. Let P(f=y|x ON) and P(f=y|x OFF)
 be the empirical distributions of the
 filter response, conditioned on x being
 ON or OFF an edge
- 3. Use loglikelihood ratio test to detect edges: log P(f=y|x ON)/P(f=y|x OFF) > T.

Example

- Let f(I(x)) = |grad I(x)|
- Calculate empirical histograms P(f=y|ON) and P(f=y|OFF).
- P(f=y|ON)/P(f=yOFF)is monotonic in y.
- So loglikelihood test is threshold on |grad (I(x)|.

Coupling scalar filters

- Couple different edge cues by making f(.) vector-valued.
- Example, combine filters at different scales -- |grad G_sig * I|, where G_sig is a Gaussian with s.d. sig and * is convolution.
- Example, combine different filters at different colour bands.

Datasets with Ground-Truth

 Sowerby Dataset – 100 colour images of English country with segmentations.

South Florida Dataset – 50 grey-scale Images with segementations.

Berkeley Dataset – 100's of segmented images. People's judgements of edges are very similar.

Sowerby Example

Representations

 Use non-parametric representations of the histograms/probability distributions.

Problem – the number of bins increases exponentially with the dimension of the filter.

The amount of training data must grow exponentially to ensure generalization.

Example

- A 9-dim filter with 10 bins per dimension has 1,000,000,000 bins.
- But 100 images with 500 x 800 pixels (each) has approximately
 2,800,000 edges (7% per image).

Not enough data.

Our Strategy

- Adapt the representation to the amount of data available. Use cross-validation to check for overlearning.
- Select histogram bin boundaries for 1-dim filter to maximize performance measures (6 bins is adequate)

Use same bins for multi-dimensional filters AND use decision cuts (if necessary) to Reduce the representation.

Performance Measures

- ROC curve plot false +'ves against false
 -ve's of loglikelihood test as threshold varies.
- Area under the ROC curve (error of two-alternative forced choice). Bayes risk,

Chernoff information – Bhattarcharyya bound. Motivated by theoretical studies by Yuille and Coughlan (2000).

All measures gave equivalent results.

Chernoff and Bhattarcharyya

The Chernoff Information between distributions p(y) and q(y) is:

$$C(p,q) = -\min_{0 \le \lambda \le 1} \log \{ \sum_{y=1}^{J} p^{\lambda}(y) q^{1-\lambda}(y) \}.$$

Motivated by order parameter theory for curve detection (Yuille, Coughlan 2000).

The Bhattarcharyya coefficient is:

$$B(p,q) = -\log\{\sum_{v=1}^{J} p^{1/2}(y)q^{1/2}(y)\}$$

Choice of 1-D Bins

- Select bin boundaries to maximize
 Chernoff as a function of no. bins.
- |grad(I)|: C=0.125 for discrim. thresh.

Decision Tree Representation

 Adaptively selects cuts on 1-D filter axes to maximize Chernoff. Compact representation requiring less data.

Cross-Validation

Train on half dataset and test on rest.
 Overlearning (left). True learning (right).

Two Datasets: I Sowerby

Sowerby – much texture/clutter:

Two Datasets: II Florida

South Florida: little texture/clutter

Filters

Differential Operator: grad, Laplacian,
 Nitzberg, Gabors, Hilbert transform pairs.

Scales: G(sig)*I: G Gaussian, sig SD, * Convolution.

Colour: Full colour, greyscale, chrominance

Filter Scales

Sowerby (left), Florida (far right)

Triangles $|\nabla|$, Diamonds ∇^2 , Stars $N_{1,2}$, Crosses N_1

Oriented Filters:Biology?

Gabor filterbank/Hilbert filterbank.

Multiscale

Sowerby (left), Florida (far right)
 Notation:{1,2} – joints at scales 1,2.

Variations between images:I

 Relative effectiveness of filter combinations is consistent over dataset.

 P(f=y|on) and P(f=y|off) are similar between images. Chernoffs wrt average.

Chernoff and ROC

Conjectured relationship between
 Chernoff and ROC (exact for Gaussians).
 Induced dist. On log-likelihood.

Compare w. Edge Detectors

- (I). Florida Dataset.
- Bowyer et al. (2000) evaluated 8 edge detectors. Bayes risk in range 0.035-0.045.

Statistical edge detection gave Bayes risk 0.0350. Canny at 0.0352 (our implement)

Note: little texture/clutter in Florida. Edges at single scale (small scale filters most effective).

Compare w. Edge Detectors

• (II) Sowerby. More texture/clutter and edges at multiple scales. Statistical edge Detection (right) outperforms Canny (left)

Compare w. Canny

Canny (top), Statistics (bottom).

Adaption – Sowerby & Florida

 Learn stats on one dataset and adapt to the other. (Scaling assumption).

Extras:

 Localization: Multiple classification: on edge, 1 pixel from edge, 2 pixels, etc.
 (Konishi, Yuille, Coughlan 2002).

Region Identification: Vegetation, Sky, Road, Building, etc. (Konishi and Yuille 1999).

Summary

(I) Statistical regularities of ON and OFF edge. (Extends studies of image stats.) (II) Implemented a Statistical Edge Detector on 2 datasets – showed it outperformed alternatives quantitatively. (III) Easy to combine with other stat algs. (IV) There are many stat. regs. in images.